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Abstract. The confinement free energy per unit length of a continuous semiflexible polymer or
wormlike chain in a tube with a rectangular cross section is derived in the reBimpeL1, Lo

of strong confinement. Her® is the persistence length, aridd and L, are the sides of the
rectangle. The result is also interpreted in terms of the escape probability of a randomly-
accelerated particle from a rectangular domain.

The statistical properties of a continuous semiflexible polymer or wormlike chain in a
cylindrical tube have been studied with several equivalent theoretical approaches [1-5],
reviewed in [6]. For a tube with a circular cross section of diamétethe confinement

free energy per unit length f is given by

T
Af = A % Ap = 2.46+ 0.07 (1)

in the regimeP >> D of strong confinement, where the density of polymer-wall collisions
is high. HereP = «/kgT is the persistence length, ardis the bending modulus. From
dimensional analysia\f = kgT /A, where is a length. As emphasized by Odijk [3, 6],
the relevant physical length for a strongly confined polymer is not the persistence ngth
but the typical distance ~ PY3D?/® between points where the polymer touches the tube.

For validity of the continuum description the tube diamei@r must be large in
comparison with typical microscopic distances such as the monomer separation.
Equation (1) is expected to hold for any semiflexible linear polymer in the regime
P » D >» a. The dimensionless constadf is a universal number, independent of
both macroscopic and microscopic properties of the polymer chain. Its value is only
known approximately. The estimate in equation (1) was obtained by Dijletted [7]
from computer simulations.

In this letter a semiflexible polymer in a tube with a rectangular cross section with edges
L, andL, is considered. The rectangle leads to more tractable mathematics than the circle,
and it is shown that\ f, including the universal amplitude, is exactly determined by a
one-dimensional integral equation. A numerical solution of the integral equation yields
ksT
PL3
This is the main result of this letter. As discussed below, the result may also be interpreted
in terms of the escape probability of an undamped Newtonian particle, moving in two
dimensions and driven by Gaussian white noise, from a rectangular domain.

Af = An——= (L7 + 1,7 Ap = 1.1036 2
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In specifying polymer configurations, it is convenient to use the three Cartesian
coordinategx, t) = (x1, x2, t), wWith the¢-axis directed parallel to the tube. In the regime of
strong confinement, configurations with overhangs are negligibleziis.a single-valued
function ofz, and the partition function is given by the path integral [8]

Z(x, u; :1) = [ D2rex “d 1P<dzx>2 V(x) 3)
(wvuv o, Uo, _/ X p _‘/0 é @ + (33 .

Herex andu = dx/dr denote the displacement and slope of the polymer ahdxq and

ug the same quantities at= 0. The two terms in the exponential function represent the
bending energy and the potential energy leading to confinement, both dividedbyThe
path integral implies the partial differential equation [8—12]

0 1
[at +u-Vw—§ 5+V(w)] Z(x, u; o, ug; 1) =0 (4)
with the initial condition
Z(x, u; xo, ug; 0) = 8(x — xo)d(u — ug). (%)

Equation (4) is readily solved in the cas&gxz) = 0 and V(x) = %bwz of a free
[8] and a harmonically confined polymer [13], respectively. The exact solution [14] for
a polymer confined to the half spage > 0 is considerably more complex, due to the
hard-wall boundary condition. Polymer configurations with a discontinuity in slope cost
an infinite energy according to equation (3) and are completely suppressed. This implies
[14] that Z(x, u; xg, uo; t) vanishes foru - n > 0 asx approaches a hard wall. This
requirement and the differential equation (4) with (5) determine the non-zero but initially
unspecified value o¥ (x, u; xo, ug; t) on the boundary fow - n < 0. Heren is a unit
vector perpendicular to the boundary surface and directed into the region accessible to the
polymer. In this letter a polymer in a tube with a rectangular cross section, i.e. four hard
walls, is considered. The confining potential is given by

(6)

V() 0 0<X1<L1,0<XQ<L2
€r) =
otherwise.

In analysing long polymer chains it is convenient to look for exponentially decaying
solutions of equation (4) with the forn¥ (x, u) exp(—Et). The eigenfunctionsl, and
eigenvaluest, satisfy

1
[u -V, — ﬁvg + V(@) — E:| U, (z, u) = 0. (7)
In the long polymer limit the partition function and the confinement free energy per unit
length are given by

Z(x, w; xo, ug; t) ~ constantx Wo(x, w)Wo(xg, —ug) € = t — o0 (8)
A .

—f = — lim t7*In Z(z, u; o, uo; t) = Eo 9)
kT t—00

where Ey is the eigenvalue with the smallest real part. The eigenvaligsare, in
general, complex. However, for a non-negative confining potenigljs positive and
non-degenerate, due to the real, non-negative argument of the exponential function in the
path integral (3).

In its statistical properties the semiflexible polymer is equivalent to a randomly
accelerated particle moving in two dimensions. Consider an undamped particle of unit mass
moving according to the Newtonian equations of motiém; (> = £;(¢) in the unbounded
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two-dimensional spacéxi, x2). Let &;(¢) be a Gaussian random force with zero mean and
correlation function(§; (1)&;(¢')) = P*l(S,»jS(t —t"). The probability density iz, u) space
that the particle remains in the rectangular domaia 0; < L1, 0 < x, < L, for a time
t while the position and velocity evolve froffxg, ug) to (x, u) satisfies a Fokker—Planck
equation with exactly the form (4) and (5) and the same boundary condition (see above)
as the polymer partition function at the hard walls [15, 16]. For long times the probability
that the particle has not yet left the rectangular domain decays ds- £xp, as follows
from equation (8). Recently, Masoliver and Ro[t6] gave an exact derivation of the mean
escape time of a particle moving in one dimension and driven by Gaussian white noise from
the line segment &< x < L. In this letter the decay constafy, is derived with a very
similar approach.

For the rectangular confining potential (6), equation (7) has the separable solution

Wo(x, u) = V¥ (x1, u1; L)y (x2, uz; L) Eq = €o(L1) + €o(L2) (10)

where
d 1 92 ]
uiafxi—ﬁafiz—fo(lﬂ') Y(xi,ui; L) =0 O<xi <L; (11)
with i = 1,2. On rescaling the rectangle into a square and introducing dimensionless
variablest, y; = £(x;/L;), vi = (2¢P/L;)*3u;, equations (10) and (11) are replaced by
Wo(@,w) = ¥ (yr, )Y (2. v2)  Eo=£2R3@P) AL P 4+ 1,7 (12)
a 92

(vay—avz—l)W(y,v):O O<y<d. (13)
The functiony (y, v) satisfies the hard-wall boundary conditions

v(O0,v)=0 v>0 v@,v)=0 v<0 (14)

discussed just above equation (6). Note that the dependendef GfsT = Ey on the
physical parameter®, L, and L, is already quite explicit in equation (12) and similar
to (2). The eigenvalue(L;) in equations (10) and (11) does not appear in (13). The
problem of calculating the eigenvalue has been replaced by the problem of determining the
dimensionless interval width for which (13) and (14) have a physical solution.

Following Masoliver and Po#r [16], we solve the differential equation (13) and (14)
for v > 0 and extend the solution to negativausing the symmetry property

vy, v) =y -y —v) (15)
which follows from the invariance of the confining potential under— ¢ — y. It is

convenient to continugy(y,v) forv > 0 from 0 < y < £ to y > £ and consider the
Laplace transform

o= [ deruow (16)
0
which satisfies the Airy differential equation [17]
2
so— 2 1) g0 =0, (17)
2

The physical solution, which vanishes for— oo, is ¥ (s, v) = W(s)Ai(s¥3v — s723),
where Aiz) is the standard Airy function [17] andV(s) is a weight function to be
determined. With equal generality one may write
_1sAI Y3 — 5723) 99 (5, 0)
Ai’(—s—2/3) v

Vs, v)=s (18)



L170 Letter to the Editor

According to the Faltung theorem [17] the inverse Laplace transform of equation (18) has
the form

Y a .0
Y(y.v) = —/ dy'K(y -, v)% (19)
0 v
c+ioco ds —1/3Ai (Sl/3U _ s—2/3) .

Compensating minus signs have been introduced in equations (19) and (20) so that the
quantity K (y, 0) defined by (20) is positive. Note that(y, v) as given by equation (19)
for v > O satisfies the hard-wall boundary condition (14)at O.

An integral equation for the unknown functiény (y’, 0)/dv in equation (19), may be
derived as follows. From (15} (y,0) — ¥ (¢ — y,0) = 0. Expressing the two terms on
the left-hand side of this relation as integralsaaf(y’, 0)/dv using (19) and substituting
Ay (y’,0)/dv = —ay (£ — y’, 0)/dv, which also follows from (15), leads to

02 o
| kay =510 = ke -y = y1.0] V2 -

To solve the integral equation (21), one must first calcukte, v), defined by (20).
This was done numerically, after deforming the integration contour to pass just below
and above the real-axis, enclosing the poles and branch cut [17] of the integrand. The
numerical procedure was checked by direct numerical integration of (20) in the complex
plane usingMiathematica Fory > 0 andv > 0, K (y, v) is well behaved except at= 0.
The asymptotic form of the integrand in (20) for largecontributes the leading singular
term

K(y, v)sing = ky =23 exp(—v3/9y) k=-T3)Ai(0AI'(0)1 = 051203906 (22)

aty = 0. The functionK (y, 0) is shown in figure 1, with and without subtraction of the
singular contribution (22).

Equations (15) and (21) and the singular teknt?2 in K (y, 0) imply the leading
singular behavioudy (v, 0)/dy ~ [y(£ — y)]"¥® at y = 0, ¢, encountered previously in
[8,12,14,16]. It is convenient to consider the functigfy) = —g(¢ — y) defined by

Y (. 0)
dy
Both g(y) and its derivativeg’(y) turn out to be smooth and finite at= 0, ¢.

The integral equation (21) with substitution (23) was solved numerically by
approximating it with a difference equation of the form

J

0. (21)

= [y — ] (). (23)

Taking the singularities (22) and (23) into account, the weights;, y;) were chosen
according to a four-point quadrature rule (see [18], equation (18.3.5)), so that the sum in
(24) exactly reproduces the integral in (21) for all functigg(e) that have the form of
piecewise-continuous third-order polynomials. Since the exégt is a smooth function,
good numerical precision is achieved, even for small

For small¢ and fixedN all eigenvalues of the matriw(y;, y;) are positive, and the
only solution of the difference equation (24) is the trivial solutign;) = 0. As¢ increases,
the smallest eigenvalue becomes negative. The critical valdeabfwhich the eigenvalue
vanishes converges rapidly with increasifido 1.6396. Inserting this value in equation (12)
and making use of (9), one obtaids; = 1.1036 for the universal amplitude in (2).



Letter to the Editor L171

y/l

Figure 1. The functionsK (y,0), K'(y,0) = K(y,0) — Ksing(y, 0), and g(y), defined by
equations (20)—(23), for & y/¢ < 1.
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Figure 2. The functiony (y, v), defined by equations (12)—(14), for0y/¢ < 1 andv = 0.0,
0.2, 04,..., 2.0, normalized so thaf (¢/2,0) = 1.

At the critical value of¢ the integral equation (21), (23) has the non-trivial solution
g(y) shown in figure 1. The solution is an odd functionyof- £/2, as expected from (15)
and (23), and is smooth and roughly linear.

The eigenfunctiony(y,v) = ¥ (¢ — y, —v), which through (8) and (12) directly
determines the partition function of a long confined polymer, is shown as a function of
y/¢ for v = 0.0, 0.2,...,2.0 in figure 2. In accordance with the hard-wall boundary
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condition (14),y (¢, v) vanishes for negative. For positivev, ¥ (¢, v) has a maximum for
a value ofv between 0.6 and 0.8. This reflects the tendency of a long polymer to slope
outward from the interior of the tube towards a fixed endpoint on the wall of the tube.
Finally, we compare the result = 2.464 0.07 of Dijkstraet al [7] from computer
simulations and our resulfi; = 1.1036 with some rigorous inequalities. Both predictions
are consistent with the lower bounds
3 3
AO > é AD > ﬁ
which follow [13] from the exact confinement free energy of a semiflexible polymer in a
harmonic potential. The inequalities

2AD < AO < 24/3A[] (26)

reflect the fact that a tube with a circular cross section of diambtés more confining
than a tube with a square cross section and efdgend less confining than a tube with
a square cross section and edBgv/2, i.e. Zo(D) > Zo(D) > Zo(D//2). Inserting
our result for Ag, thought to be exact to five significant figures, in equation (26) yields
22072 < A < 2.7809. The estimatel, = 2.46+ 0.07 is clearly consistent with these
bounds.

= 0.59528 (25)

This work was begun during a six month stay at the Univatrdissen. | thank Hans-
Werner Diehl and coworkers for hospitality and useful comments and the Alexander von
Humboldt-Stiftung for financial support. | am also grateful to Klaus-Dieter Harms and Hans
van Leeuwen for helpful discussions.
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