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Abstract. The confinement free energy per unit length of a continuous semiflexible polymer or
wormlike chain in a tube with a rectangular cross section is derived in the regimeP � L1, L2

of strong confinement. HereP is the persistence length, andL1 andL2 are the sides of the
rectangle. The result is also interpreted in terms of the escape probability of a randomly-
accelerated particle from a rectangular domain.

The statistical properties of a continuous semiflexible polymer or wormlike chain in a
cylindrical tube have been studied with several equivalent theoretical approaches [1–5],
reviewed in [6]. For a tube with a circular cross section of diameterD, the confinement
free energy per unit length1f is given by

1f = A© kBT

P 1/3D2/3
A© = 2.46± 0.07 (1)

in the regimeP � D of strong confinement, where the density of polymer-wall collisions
is high. HereP = κ/kBT is the persistence length, andκ is the bending modulus. From
dimensional analysis1f = kBT/λ, whereλ is a length. As emphasized by Odijk [3, 6],
the relevant physical length for a strongly confined polymer is not the persistence lengthP

but the typical distanceλ ∼ P 1/3D2/3 between points where the polymer touches the tube.
For validity of the continuum description the tube diameterD must be large in

comparison with typical microscopic distancesa, such as the monomer separation.
Equation (1) is expected to hold for any semiflexible linear polymer in the regime
P � D � a. The dimensionless constantA© is a universal number, independent of
both macroscopic and microscopic properties of the polymer chain. Its value is only
known approximately. The estimate in equation (1) was obtained by Dijkstraet al [7]
from computer simulations.

In this letter a semiflexible polymer in a tube with a rectangular cross section with edges
L1 andL2 is considered. The rectangle leads to more tractable mathematics than the circle,
and it is shown that1f , including the universal amplitudeA�, is exactly determined by a
one-dimensional integral equation. A numerical solution of the integral equation yields

1f = A� kBT

P 1/3
(L
−2/3
1 + L−2/3

2 ) A� = 1.1036. (2)

This is the main result of this letter. As discussed below, the result may also be interpreted
in terms of the escape probability of an undamped Newtonian particle, moving in two
dimensions and driven by Gaussian white noise, from a rectangular domain.
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In specifying polymer configurations, it is convenient to use the three Cartesian
coordinates(x, t) = (x1, x2, t), with thet-axis directed parallel to the tube. In the regime of
strong confinement, configurations with overhangs are negligible, i.e.x is a single-valued
function of t , and the partition function is given by the path integral [8]

Z(x,u;x0,u0; t) =
∫

D2x exp

{
−
∫ t

0
dt

[
1

2
P

(
d2x

dt2

)2

+ V (x)
]}
. (3)

Herex andu = dx/dt denote the displacement and slope of the polymer att , andx0 and
u0 the same quantities att = 0. The two terms in the exponential function represent the
bending energy and the potential energy leading to confinement, both divided bykBT . The
path integral implies the partial differential equation [8–12][

∂

∂t
+ u · ∇x − 1

2P
∇2
u + V (x)

]
Z(x,u;x0,u0; t) = 0 (4)

with the initial condition

Z(x,u;x0,u0; 0) = δ(x− x0)δ(u− u0). (5)

Equation (4) is readily solved in the casesV (x) = 0 andV (x) = 1
2bx

2 of a free
[8] and a harmonically confined polymer [13], respectively. The exact solution [14] for
a polymer confined to the half spacex2 > 0 is considerably more complex, due to the
hard-wall boundary condition. Polymer configurations with a discontinuity in slope cost
an infinite energy according to equation (3) and are completely suppressed. This implies
[14] that Z(x,u;x0,u0; t) vanishes foru · n > 0 asx approaches a hard wall. This
requirement and the differential equation (4) with (5) determine the non-zero but initially
unspecified value ofZ(x,u;x0,u0; t) on the boundary foru · n < 0. Heren is a unit
vector perpendicular to the boundary surface and directed into the region accessible to the
polymer. In this letter a polymer in a tube with a rectangular cross section, i.e. four hard
walls, is considered. The confining potential is given by

V (x) =
{

0 0< x1 < L1, 0< x2 < L2

∞ otherwise.
(6)

In analysing long polymer chains it is convenient to look for exponentially decaying
solutions of equation (4) with the form9(x,u) exp(−Et). The eigenfunctions9n and
eigenvaluesEn satisfy[

u · ∇x − 1

2P
∇2
u + V (x)− En

]
9n(x,u) = 0. (7)

In the long polymer limit the partition function and the confinement free energy per unit
length are given by

Z(x,u;x0,u0; t) ≈ constant×90(x,u)90(x0,−u0) e−E0t t →∞ (8)
1f

kBT
= − lim

t→∞ t
−1 lnZ(x,u;x0,u0; t) = E0 (9)

where E0 is the eigenvalue with the smallest real part. The eigenvaluesEn are, in
general, complex. However, for a non-negative confining potential,E0 is positive and
non-degenerate, due to the real, non-negative argument of the exponential function in the
path integral (3).

In its statistical properties the semiflexible polymer is equivalent to a randomly
accelerated particle moving in two dimensions. Consider an undamped particle of unit mass
moving according to the Newtonian equations of motion d2xi/dt2 = ξi(t) in the unbounded
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two-dimensional space(x1, x2). Let ξi(t) be a Gaussian random force with zero mean and
correlation function〈ξi(t)ξj (t ′)〉 = P−1δij δ(t − t ′). The probability density in(x,u) space
that the particle remains in the rectangular domain 0< x1 < L1, 0 < x2 < L2 for a time
t while the position and velocity evolve from(x0,u0) to (x,u) satisfies a Fokker–Planck
equation with exactly the form (4) and (5) and the same boundary condition (see above)
as the polymer partition function at the hard walls [15, 16]. For long times the probability
that the particle has not yet left the rectangular domain decays as exp(−E0t), as follows
from equation (8). Recently, Masoliver and Porrà [16] gave an exact derivation of the mean
escape time of a particle moving in one dimension and driven by Gaussian white noise from
the line segment 0< x < L. In this letter the decay constantE0 is derived with a very
similar approach.

For the rectangular confining potential (6), equation (7) has the separable solution

90(x,u) = ψ(x1, u1;L1)ψ(x2, u2;L2) E0 = ε0(L1)+ ε0(L2) (10)

where [
ui
∂

∂xi
− 1

2P

∂2

∂u2
i

− ε0(Li)

]
ψ(xi, ui;Li) = 0 0< xi < Li (11)

with i = 1, 2. On rescaling the rectangle into a square and introducing dimensionless
variables`, yi = `(xi/Li), vi = (2`P/Li)1/3ui , equations (10) and (11) are replaced by

90(x,u) = ψ(y1, v1)ψ(y2, v2) E0 = `2/3(2P)−1/3(L
−2/3
1 + L−2/3

2 ) (12)(
v
∂

∂y
− ∂2

∂v2
− 1

)
ψ(y, v) = 0 0< y < `. (13)

The functionψ(y, v) satisfies the hard-wall boundary conditions

ψ(0, v) = 0 v > 0 ψ(`, v) = 0 v < 0 (14)

discussed just above equation (6). Note that the dependence of1f/kBT = E0 on the
physical parametersP , L1 and L2 is already quite explicit in equation (12) and similar
to (2). The eigenvalueε(Li) in equations (10) and (11) does not appear in (13). The
problem of calculating the eigenvalue has been replaced by the problem of determining the
dimensionless interval width̀ for which (13) and (14) have a physical solution.

Following Masoliver and Porrà [16], we solve the differential equation (13) and (14)
for v > 0 and extend the solution to negativev using the symmetry property

ψ(y, v) = ψ(`− y,−v) (15)

which follows from the invariance of the confining potential undery → ` − y. It is
convenient to continueψ(y, v) for v > 0 from 0 < y < ` to y > ` and consider the
Laplace transform

ψ̂(s, v) =
∫ ∞

0
dy e−syψ(y, v) (16)

which satisfies the Airy differential equation [17](
sv − ∂2

∂v2
− 1

)
ψ̂(s, v) = 0. (17)

The physical solution, which vanishes forv → ∞, is ψ̂(s, v) = W(s)Ai(s1/3v − s−2/3),
where Ai(z) is the standard Airy function [17] andW(s) is a weight function to be
determined. With equal generality one may write

ψ̂(s, v) = s−1/3 Ai(s1/3v − s−2/3)

Ai ′(−s−2/3)

∂ψ̂(s, 0)

∂v
. (18)
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According to the Faltung theorem [17] the inverse Laplace transform of equation (18) has
the form

ψ(y, v) = −
∫ y

0
dy ′K(y − y ′, v)∂ψ(y

′, 0)

∂v
(19)

K(y, v) = −
∫ c+i∞

c−i∞

ds

2π i
s−1/3 Ai(s1/3v − s−2/3)

Ai ′(−s−2/3)
eys . (20)

Compensating minus signs have been introduced in equations (19) and (20) so that the
quantityK(y, 0) defined by (20) is positive. Note thatψ(y, v) as given by equation (19)
for v > 0 satisfies the hard-wall boundary condition (14) aty = 0.

An integral equation for the unknown function∂ψ(y ′, 0)/∂v in equation (19), may be
derived as follows. From (15),ψ(y, 0) − ψ(` − y, 0) = 0. Expressing the two terms on
the left-hand side of this relation as integrals of∂ψ(y ′, 0)/∂v using (19) and substituting
∂ψ(y ′, 0)/∂v = −∂ψ(`− y ′, 0)/∂v, which also follows from (15), leads to∫ `/2

0
dy ′

[
K(|y − y ′|, 0)−K(|`− y − y ′|, 0)

] ∂ψ(y ′, 0)

∂v
= 0. (21)

To solve the integral equation (21), one must first calculateK(y, v), defined by (20).
This was done numerically, after deforming the integration contour to pass just below
and above the reals-axis, enclosing the poles and branch cut [17] of the integrand. The
numerical procedure was checked by direct numerical integration of (20) in the complexs

plane usingMathematica. For y > 0 andv > 0, K(y, v) is well behaved except aty = 0.
The asymptotic form of the integrand in (20) for larges contributes the leading singular
term

K(y, v)sing= ky−2/3 exp(−v3/9y) k = −0( 1
3)
−1Ai(0)Ai ′(0)−1 = 0.512 039 06 (22)

at y = 0. The functionK(y, 0) is shown in figure 1, with and without subtraction of the
singular contribution (22).

Equations (15) and (21) and the singular termky−2/3 in K(y, 0) imply the leading
singular behaviour∂ψ(y, 0)/∂y ∼ [y(` − y)]−1/6 at y = 0, `, encountered previously in
[8, 12, 14, 16]. It is convenient to consider the functiong(y) = −g(`− y) defined by

∂ψ(y, 0)

∂y
= [y(`− y)]−1/6g(y). (23)

Both g(y) and its derivativeg′(y) turn out to be smooth and finite aty = 0, `.
The integral equation (21) with substitution (23) was solved numerically by

approximating it with a difference equation of the form∑
j

w(yi, yj )g(yj ) = 0 yi = i`/(2N) i, j = 0, 1, 2, . . . , N. (24)

Taking the singularities (22) and (23) into account, the weightsw(yi, yj ) were chosen
according to a four-point quadrature rule (see [18], equation (18.3.5)), so that the sum in
(24) exactly reproduces the integral in (21) for all functionsg(y) that have the form of
piecewise-continuous third-order polynomials. Since the exactg(y) is a smooth function,
good numerical precision is achieved, even for smallN .

For small` and fixedN all eigenvalues of the matrixw(yi, yj ) are positive, and the
only solution of the difference equation (24) is the trivial solutiong(yi) = 0. As` increases,
the smallest eigenvalue becomes negative. The critical value of` at which the eigenvalue
vanishes converges rapidly with increasingN to 1.6396. Inserting this value in equation (12)
and making use of (9), one obtainsA� = 1.1036 for the universal amplitude in (2).
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Figure 1. The functionsK(y, 0), K ′(y, 0) = K(y, 0) − Ksing(y, 0), and g(y), defined by
equations (20)–(23), for 0< y/` < 1.

Figure 2. The functionψ(y, v), defined by equations (12)–(14), for 0< y/` < 1 andv = 0.0,
0.2, 0.4, . . . , 2.0, normalized so thatψ(`/2, 0) = 1.

At the critical value of` the integral equation (21), (23) has the non-trivial solution
g(y) shown in figure 1. The solution is an odd function ofy − `/2, as expected from (15)
and (23), and is smooth and roughly linear.

The eigenfunctionψ(y, v) = ψ(` − y,−v), which through (8) and (12) directly
determines the partition function of a long confined polymer, is shown as a function of
y/` for v = 0.0, 0.2, . . . ,2.0 in figure 2. In accordance with the hard-wall boundary
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condition (14),ψ(`, v) vanishes for negativev. For positivev, ψ(`, v) has a maximum for
a value ofv between 0.6 and 0.8. This reflects the tendency of a long polymer to slope
outward from the interior of the tube towards a fixed endpoint on the wall of the tube.

Finally, we compare the resultA© = 2.46± 0.07 of Dijkstra et al [7] from computer
simulations and our resultA� = 1.1036 with some rigorous inequalities. Both predictions
are consistent with the lower bounds

A© >
3

2
A� >

3

27/3
= 0.595 28 (25)

which follow [13] from the exact confinement free energy of a semiflexible polymer in a
harmonic potential. The inequalities

2A� < A© < 24/3A� (26)

reflect the fact that a tube with a circular cross section of diameterD is more confining
than a tube with a square cross section and edgeD and less confining than a tube with
a square cross section and edgeD/

√
2, i.e. Z�(D) > Z©(D) > Z�(D/

√
2). Inserting

our result forA�, thought to be exact to five significant figures, in equation (26) yields
2.2072< A© < 2.7809. The estimateA© = 2.46± 0.07 is clearly consistent with these
bounds.

This work was begun during a six month stay at the Universität Essen. I thank Hans-
Werner Diehl and coworkers for hospitality and useful comments and the Alexander von
Humboldt-Stiftung for financial support. I am also grateful to Klaus-Dieter Harms and Hans
van Leeuwen for helpful discussions.
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